in Blog

September 10, 2024

Implement a Successful AI Strategy. How to Do It Right?

Author:




Edwin Lisowski

CSO & Co-Founder


Reading time:




16 minutes


Artificial intelligence is gaining traction across various industries, thanks to its potential to drive organizational growth, improve operational efficiency, and reduce costs. Despite its numerous benefits, many organizations are still skeptical about adopting artificial intelligence. That’s mainly because its implementation has various pitfalls that, if not addressed, could undermine the effectiveness of any initiative.

Organizations could, however, overcome most of these hurdles and build robust, scalable, and efficient artificial intelligence solutions by simply adopting an effective artificial intelligence plan. In this guide, we take you through the process of creating a successful artificial intelligence plan. We’ll also shed some light on some of the common hurdles you may encounter while adopting artificial intelligence and how to overcome them.

AI-Consulting-CTA

Benefits of building an artificial intelligence strategy

An artificial intelligence strategy is simply a vision or plan for integrating artificial intelligence into your organization. Essentially, this implies integrating artificial intelligence solutions into your business model in a way that aligns with your overall organization goals and strategy. This way, you are better able to leverage artificial intelligence capabilities for specific, measurable outcomes that drive business success.

Building and integrating an artificial intelligence solution into your business model carries various benefits, including:

Enhanced analytics

One of the most impressive attributes of artificial intelligence systems is their remarkable ability to handle complex data. With enough high-quality data, artificial intelligence solutions can uncover hidden patterns, trends, and relationships – far more than what the human brain can comprehend.

Artificial intelligence is also instrumental in data analytics. By running huge piles of complex data on artificial intelligence algorithms, businesses could benefit from easy-to-understand visuals and insights that could help guide their decision-making.

Deeper customer insights

Businesses spend an insane amount of money gathering customer data for analytics. Recent estimates put this at around $40,000 to hundreds of thousands of dollars annually.[1] However, even with all this data, it is still pretty hard to derive any meaningful insights without the proper tools.

That’s where artificial intelligence comes in. By implementing a successful artificial intelligence plan, businesses can effectively leverage artificial intelligence tools to analyze patterns in customer data to determine customer behavior and preferences. Some of the best artificial intelligence-powered data analytics tools could also enable you to segment your customers into specific groups, helping you tailor your marketing plan.

Improved decision-making

The secret to running a successful organization comes down to your ability to make good decisions. A well-structured decision-making process could empower your organization to adapt to changing market conditions, make informed choices, and stay competitive. [2]

With artificial intelligence-powered technologies like machine learning and generative artificial intelligence, businesses can quickly process huge amounts of data and get near-instantaneous insights. This enables businesses to be more proactive rather than reactive in decision-making, helping them address issues while they’re still in their infancy by making correct, data-driven decisions.

Process automation

According to recent studies, process automation could increase global productivity growth by 0.8% to 1.4 %. Currently, at least 31% of businesses have fully automated at least one function. [3]

All this has been made possible by artificial intelligence. With the right tools, businesses can automate repetitive tasks like inventory management, data entries, and customer service, allowing staff to focus on more crucial aspects of the organization.

Read more: Generative AI Deployment Strategies

How to create a successful AI strategy

While artificial intelligence is set to upend nearly every industry, the technology’s new and fast-evolving nature can make it hard to integrate into your organization. What’s even more concerning is the strategies applied vary by industry, making it difficult to come up with a one-size-fits-all solution.

That said, artificial intelligence initiatives have certain commonalities that could help you come up with a basic framework for overcoming the pitfalls and designing artificial intelligence solutions that actually drive business goals.

Here’s an example of one of the most commonly used frameworks that could help you develop an effective artificial intelligence plan.

Explore the technology

Before you even consider building an artificial intelligence plan, you must first familiarize yourself with the technology. You can start by gaining an understanding of different artificial intelligence technologies like machine learning (ML), Generative artificial intelligence, and Natural Language Processing (NLP).

You should also research various artificial intelligence use cases to know how the technology is being applied in different industries. With this in mind, you can go ahead and list the issues that artificial intelligence can help you address and the potential benefits you stand to gain.

Assess and discover

What is the nature of your organization? What are its priorities and capabilities? You can answer these questions by simply reviewing the strength of your IT department – specifically the teams that will be responsible for implementing and managing artificial intelligence systems. You should also interview department heads to identify potential issues artificial intelligence could solve.

Define clear objectives

Artificial intelligence isn’t always the answer. The scope of its viability and effectiveness comes down to the problems you’re trying to address. Therefore, it is important to focus solely on objectives which artificial intelligence has a successful track record of solving.

Identify potential vendors and partners

Identify several companies in your niche or industry that have successfully implemented artificial intelligence and ML technologies. While you’re at it, you should also create a list of potential vendors and partners and some notable tools you find beneficial to your objectives.

When evaluating potential partners and vendors, you need to pay close attention to their reputation, experience, and pricing. This will help narrow down your list so you can identify one that most compliments what you’re looking for.

Build a roadmap

When creating an artificial intelligence solution, you need to build a roadmap that prioritizes early success and measurable value to the organization. Here, you need to choose projects based on identified needs, determine the best tools for the job, and organize them based on their usefulness in the project.

How to build AI strategy

Some crucial areas to consider include:

  • Data: Will the existing data be enough to fuel the AI solution or do you need to acquire new datasets? Regardless of the situation, you need to implement a data governance framework to manage the data.
  • Algorithms: An algorithm is a set of rules that a computer follows in calculation or other problem-solving operations. Besides making decisions, algorithms also enable machines to learn and analyze data.

Any AI solution is a representation of what was learned by the AI algorithms embedded into it. These systems often require a skilled workforce to effectively manage them. Therefore, at this stage, you should also determine who will deploy algorithms as well as design, develop, and validate the AI models.

  • Infrastructure: How will your AI systems be hosted? Better yet, how will they be scaled? You have several options here – cloud, third-party provided, or using your own infrastructure. Each choice offers a unique set of benefits and limitations, so you may need to research extensively before reaching a decision.
  • Talent and outsourcing: You need to assess the readiness of your IT team and identify any skill gaps within the organization. Here, you should also determine if the existing skill pipeline within the organization fills crucial roles such as data scientists and developers. You could also check the feasibility of outsourcing certain operations.

Read more: Building an AI-Ready Infrastructure: Key Considerations and Strategies

Present the AI strategy

Before you can go ahead with the development and implementation process, you may need to present the strategy to stakeholders so they can ascertain it aligns with the organization’s objectives. Here, you should clearly communicate the benefits, costs, and expected results. If the stakeholders like your plan, you’ll probably get the funding you need to implement it.

Establish ethical guidelines

AI, if not used ethically, could pose a myriad of moral and ethical concerns. As such, you need to understand the ethical implications of using artificial intelligence in the organization. You also need to commit to ethical artificial intelligence initiatives and governance models to come up with effective guidelines.

Regardless of your approach, you should regularly monitor the AI model for potential biases and implement transparency and fairness practices to address ethical concerns.

Assess and adopt

AI products and technologies are evolving at a phenomenal rate. Any organization looking to stay competitive must keep up with these changes lest their competitors overtake them.

As such, you need to structure your AI solution based on new insights and emerging opportunities. This way, your AI solutions will always be up to date with the possibility of further improvement.

Key factors of an artificial intelligence strategy

While AI offers many benefits, it is crucial to consider its role in your organization before deploying it. Some of the most crucial factors to consider include:

AI alignment with your organization’s strategy

How does the AI solution align with your organization’s strategy? Here, you need to consider factors like what business processes could benefit from artificial intelligence and how it could impact the processes. Implementing AI without understanding its place in your business plan could lead to unmet goals, misallocated resources, and conflicts with established processes.

Therefore, organization leaders must understand the value of AI and the associated risks. Furthermore, successful AI implementation cannot be solely led by the IT team. Collaboration with various other departments, including the top leadership, could streamline the implementation process and ensure that AI solutions align with organizational needs. Ultimately, this will help deliver tangible value rather than creating redundancies and disruptions.

Governance strategies

Governance, in the simplest terms, refers to the processes, practices, and procedures that direct and control an organization. Proper governance establishes frameworks for decision-making, promotes accountability, and ensures that organizational needs are met.

Like with other business processes, governance could have a profound impact on AI initiatives. Unfortunately, this has proven challenging as 1 in 5 companies cite difficulty in ensuring data governance. [4]This consequence can lead to unintended outcomes such as misuse and misalignment with organizational objectives.

Proper AI governance ensures transparency and accountability in decision-making, regular assessments based on performance metrics, and fosters effective communication and collaboration when implementing AI solutions.

Time and cost investments

You should consider the cost and time it takes to implement AI into your organization. Like with any new business process, your organization should calculate the ROI of AI and its impact on specific departments. For instance, you can calculate productivity increases due to time saved by automating certain tasks.

Implementing an AI plan without a clear method of tracking the AI’s success can have far-reaching consequences. For instance, the organization risks heavy investment without a way of estimating the system’s success or failure.

Implementation of AI Strategy – step-by-step

Here’s a step-by-step guide on how to implement a successful AI plan that actually works.

Define your objectives

Before you embark on any AI initiatives, it is important to first state your objectives. This could be anything from boosting productivity, automating processes, or cutting costs. Regardless of your intention, having clear goals can help guide your implementation plan and provide measurable success. Determining your objectives starts with understanding your company’s needs. This can include the challenges you’re hoping artificial intelligence could help you overcome or other business areas where AI could have a profound impact.

You should also consider both short and long-term goals. Some common short-term objectives to consider include increasing customer satisfaction, improving operational efficiency, and reducing costs. Similarly, your long-term objectives should be primarily centered on fostering innovation, gaining a competitive edge, or transforming your organization model.

Once you’ve stated your objectives, you should link them to specific use cases. For instance, if you want to improve customer service, you could consider implementing AI chatbots or sentiment analysis tools.

Assess your data readiness

Data is the lifeblood of AI. It powers the artificial intelligence’s ability to learn, predict, and make actionable decisions. To avoid getting into a ‘garbage-in garbage-out’ scenario, you should focus on the following key areas in your assessment.

  • Availability: Is the data available at hand relevant to your AI plan? You should also check to ensure you have enough data since more data often means more accurate results.
  • Quality: When it comes to implementing a successful Artificial Intelligence plan, data quantity isn’t always enough – quality matters too. As such, you should ensure that the data is complete, accurate, consistent, and relevant. Working with low-quality data can lead to inaccurate AI models and misleading predictions.
  • Diversity: To improve the model’s accuracy and effectiveness, you should expose it to a wide variety of data. The data needs to represent different conditions, scenarios, and outcomes. For instance, when implementing an AI model for customer service, your data should represent all types of customer interactions across various demographics.
  • Infrastructure: What is the nature of your data storage and management infrastructure? An ideal data infrastructure should be robust and easily scalable to meet organizational data storage and processing requirements. You should also ensure that your data infrastructure supports integrations with AI systems.
  • Skills: Does your team have the necessary skills to manage the AI plan? Some of the most important skills to consider are data management, data analysis, and data cleansing. If you don’t have the necessary skills, you may consider hiring or outsourcing the project to a third party.

Build a multi-disciplinary team

To increase the success and viability of your artificial intelligence initiative, it is crucial to assemble a team with diverse skills and backgrounds. AI projects often impact multiple areas of business. Therefore, it is beneficial to have a team that can address the various aspects of implementation. Some of the most important disciplines to consider include:

  • AI/ML engineers: This will be the team responsible for developing, deploying, and maintaining AI models. The team should have strong technical skills, including expertise in programming languages, machine learning algorithms, and data analysis.
  • Data scientists/analysts: The primary role of data scientists in any Artificial intelligence initiative is to explore and interpret the data. A well-skilled team can help convert raw data into meaningful insights that help define AI objectives and interpret the outcomes of AI models.
  • Data engineers: Data engineers are responsible for designing, building, and managing the data infrastructure. Essentially, they ensure data is collected, stored, and processed in the most efficient way possible.
  • Domain experts: Domain experts understand all the ins and outs of your company. They bring a wealth of knowledge that could help align the AI project with your business needs and ensure the solutions are tailored to specific domains.

Choose the right AI technologies

Having the right artificial intelligence technologies could significantly improve the success of AI implementation. The technologies you choose should align with your business objectives, budget, data readiness, and in-house expertise.

Some of the most important areas to consider include:

  • Type of AI technology: There are different types of artificial intelligence technologies available. They include machine learning (ML), natural language processing (NLP), deep learning, robotics process automation (RPA), and many others. The type of technology you choose to go for comes down to your specific business needs.
  • Proprietary vs open source: Proprietary solutions are generally easier to implement and provide support. However, they’re also quite expensive and may not offer the flexibility you need. Conversely, open-sourced solutions are often cheaper and offer greater flexibility. That said, they require vast technical expertise to implement and maintain.
  • Cloud vs on-premise: Cloud-based artificial intelligence solutions are increasingly becoming popular, mostly due to their flexibility, scalability, and reduced need for artificial intelligence infrastructure. However, some companies may benefit more from on-premise solutions due to data security and compliance requirements.

Pilot your AI initiative

It is advisable to conduct a pilot project before going all-in on your AI initiative. This allows you to test your assumptions, learn from mistakes, and gather data on the impact of your artificial intelligence initiative. When piloting your initiative, you need to choose a project that is manageable in scope and significant enough to produce measurable results.

Scale up and integrate

Scaling up and integrating artificial intelligence into the organization isn’t just about replicating the success of the pilot project on a larger scale – it also involves closely examining the broader strategic, operational, and cultural impacts the artificial intelligence will have on the organization.

While you’re at it, you should consider enhancing the organization’s technical infrastructure, integrating AI outputs into business processes, boosting organizational readiness, and constantly monitoring and assessing the initiative.

Measure and refine

To effectively measure and refine the initiative, you must first define the right KPIs. These are the metrics that you will use to assess the effectiveness of your artificial intelligence initiative. These might include tangible metrics like revenue increase, cost savings, and improved customer satisfaction scores or intangible benefits like strategic advantages and improved decision-making.

Read more: Generative AI Implementation: A step-by-step guide

Common pitfalls and how to avoid them

There are several issues that could get in the way of building and implementing a successful AI plan. These issues should be identified early and dealt with to increase the project’s potential for success. Some of the most common pitfalls to consider include:

  • Insufficient data
    AI models rely heavily on robust datasets. Inefficient access to high-quality data can undermine the strategy and effectiveness of AI applications. Therefore, before you embark on any AI project, it is vital to collect, validate, and cleanse your data for improved outcomes.
  • Lack of AI knowledge
    A lack of understanding about the capabilities of AI and its potential applications may lead to resistance, skepticism, and misinformed decision-making. As such, it is advisable to educate all relevant players, including all stakeholders, on the potential benefits and risks of implementing AI into the organization. This will help them make well-informed decisions that could vastly improve the success of your AI project.
  • Misalignment of strategy
    If the goals of the AI initiative are not closely tied to organizational objectives, priorities, and vision, it may result in a lack of support from leadership, wasted efforts, and an inability to demonstrate meaningful value.

To err on the safe side, you should first determine a specific business problem you’re trying to solve and develop your plan in alignment with solving the specific problem.

Implementing a Successful AI Strategy – final thoughts

Building and implementing a successful AI strategy takes more than having the right vision – it requires a well-thought-out plan and effective collaboration among all relevant parties. Companies also need to understand how to structure and govern AI systems to avoid biases and errors that could have a detrimental impact on the organization and community as a whole.

Therefore, it is important to have the right guardrails in place to ensure data quality, transparency, accountability, and compliance within the organization and the implemented technology.

References

[1] Datateer.com. Data Analytics Cost. URL: https://tiny.pl/81wsmt4g. Accessed on September 6, 2024
[2] Afaeducation.org. The Importance of Decision Making Process in Business. URL: https://tiny.pl/9j9htjmt. Accessed on September 6, 2024
[3] Flair.hr. Automation Statistics. URL: https://tiny.pl/9k2g-pk8. Accessed on September 6, 2024
[4] Ibm. com. IBM Global AI Adoption Index 2022. URL: https://www.ibm.com/downloads/cas/GVAGA3JP. Accessed on September 6, 2024



Category:


Artificial Intelligence